
 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

87

SAFEGUARDING AGAINST EVIL CHATBOTS: DESIGN,

DEVELOPMENT, AND INTEGRATION STRATEGIES FOR

CHATBOT SECURITY IN PHISHING ATTACKS

KARTHIKEYA PULIGADDA

UG Student,
Department of CSE,

St. Martin’s Engineering College,

Secunderabad, Telangana, India

karthikeyachess123@gmail.com

K. SREENIVASULU

Assistant Professor,

Department of CSE,
St. Martin’s Engineering College,

Secunderabad, Telangana, India

Ksreenivasulucse@smec.ac.in

Abstract- The rapid adoption of chatbots by organizations to

efficiently manage user queries has brought significant

advancements, but it has also introduced new risks.

Traditionally, before the integration of machine learning

(ML) and artificial intelligence (AI), phishing prevention

relied on manual techniques such as blacklists, rule-based

filters, and heuristic analysis, which were often slow and

insufficient against evolving threats. The primary issue was

the manual nature of these systems, which struggled to keep

up with the sophisticated tactics used by malicious entities,

leading to the exploitation of chatbots for phishing attacks.

This challenge highlighted the need for more intelligent and

adaptive security measures. The objective of this research is

to design, develop, and integrate a self-defensive chatbot

capable of identifying and neutralizing phishing attempts by

inspecting URLs embedded in user interactions. The

motivation behind this study stems from the increasing

incidents where chatbots are manipulated to deliver phishing

links that, when clicked, install malicious software to steal

sensitive data such as cookies and session passwords. This is

particularly concerning for sectors like banking and finance,

where compromised data can lead to significant user losses.

The proposed system leverages machine learning algorithms,

including Support Vector Machines (SVM), Random Forest,

and Decision Tree, to create a robust model trained on the

PHISHTANK URL dataset. This model can accurately

distinguish between normal and malicious URLs in real-

time, thereby enhancing the security of chatbot interactions.

By evaluating each algorithm's performance through

metrics such as accuracy, precision, recall, F-score, and

confusion matrices, the system ensures optimal phishing

detection capabilities. This integration is demonstrated

through a dummy banking application where the chatbot

processes user queries, employing natural language

processing (NLP) techniques to extract and safeguard

sensitive information.

Keywords: Chatbots, Phishing Prevention, Machine

Learning, Artificial Intelligence, SVM, Random Forest,

Decision Tree, PHISHTANK URL dataset.

I. INTRODUCTION

Chatbots are increasingly being integrated into customer

service platforms to handle user queries efficiently. These AI-

powered systems are used across industries like banking,

healthcare, and retail to provide immediate assistance.

However, the widespread use of chatbots has also made them

targets for phishing attacks, where malicious links are

embedded in chatbot conversations to deceive users. The rise

of digital communication platforms in India has brought about

a significant increase in the deployment of chatbots across

various sectors, especially in customer service, banking, and

e-commerce. According to recent statistics, India is one of the

fastest-growing markets for chatbot technology, with a

projected annual growth rate of 24% in the AI-driven chatbot

market between 2020 and 2025. This rapid adoption, while

beneficial for automating routine tasks and improving

customer engagement, has also opened the door to new cyber

threats. Phishing attacks, where attackers trick users into

revealing sensitive information by pretending to be

trustworthy entities, have become increasingly sophisticated.

In India, the number of phishing attacks rose by over 65%

from 2021 to 2023, with many incidents involving the

exploitation of chatbots. The traditional methods of phishing

prevention, which relied heavily on blacklists and rule-based

systems, have proven inadequate in the face of these evolving

threats, underscoring the need for more advanced and adaptive

security solutions. Before the advent of machine learning,

phishing prevention relied on static methods such as

blacklists, rule-based filtering, and heuristic analysis. These

mailto:karthikeyachess123@gmail.com
mailto:Ksreenivasulucse@smec.ac.in

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

88

manual systems were often slow to update and adapt,

making them vulnerable to new and evolving phishing

tactics. As a result, chatbots could be easily manipulated to

distribute malicious links, posing significant risks to users,

especially in sensitive sectors like banking and finance.

This lack of real-time, adaptive security measures

highlighted the limitations of traditional methods. The

motivation for this research stems from the increasing

number of incidents where chatbots have been exploited to

deliver phishing links, leading to the theft of sensitive

information such as cookies and session passwords. This is

particularly alarming in industries where security is

paramount, such as banking, where a single phishing attack

can lead to massive financial losses for users. With the

growing sophistication of phishing tactics, there is an

urgent need to develop a robust security system that can

protect chatbot interactions in real-time, ensuring that users

are safeguarded against these evolving threats. The existing

systems for phishing prevention are largely manual and

include the use of blacklists, rule-based filters, and heuristic

methods. While these approaches were effective in the past,

they struggle to keep up with the speed and sophistication

of modern phishing attacks. The primary drawback of these

methods is their static nature, which leaves them unable to

adapt quickly to new threats, resulting in increased

vulnerability and higher success rates for attackers. The

proposed system aims to address the limitations of

traditional phishing prevention methods by leveraging

machine learning algorithms to create an intelligent and

adaptive security framework for chatbots. The system will

utilize algorithms such as Support Vector Machines (SVM),

Random Forest, and Decision Tree, which are trained on

the PHISHTANK URL dataset to accurately identify and

neutralize phishing attempts in real-time. Research papers

such as "Phish Net: Predictive Blacklisting for Phishing

Detection" and "Deep Learning-Based Phishing URL

Detection" provide foundational insights into the

application of these machine learning techniques for

enhancing cybersecurity. By implementing these algorithms, the

proposed system will continuously learn from new phishing

attempts, improving its detection accuracy and adaptability over

time. In today’s digital landscape, where chatbots are becoming

integral to customer service and support, the need for robust

security measures is more pressing than ever. Phishing attacks are

growing in frequency and sophistication, posing a significant

threat to both users and organizations. A real- time, adaptive

system that can detect and neutralize phishing attempts in chatbot

interactions is essential to protect sensitive user data and maintain

trust in digital communication platforms. This project addresses

this critical need by developing a security framework that can

respond to the ever-evolving nature of cyber threats, ensuring the

safety and security of chatbot users. This project has wide-ranging

applications across various industries. In banking and finance,

the system can be

integrated into chatbots to secure customer interactions,

preventing phishing attacks that could lead to financial loss. In

e-commerce, the system can protect users from malicious

links embedded in customer service chats, ensuring a safe

shopping experience. In healthcare, the system can safeguard

patient data by securing chatbot conversations used for

appointment scheduling and consultations. Additionally, this

system can be deployed in educational institutions to protect

students from phishing attempts in online learning platforms,

and in government services to secure interactions in citizen

service chatbots. By integrating this security framework into

various sectors, organizations can significantly reduce the risk

of phishing attacks and enhance the overall security of their

digital communication channels.

II. RELATED WORK

The research on the expectation of building energy utilization

started during the 1970s when an energy emergency constrained

nations to begin contemplating ways of cutting their energy

utilization and fossil fuel by- products. The early-created

models of building energy utilization forecast depended on the

utilization of improved computation strategies that were

observational models in light of broad designing works,

permitting the evaluations to be performed at the beginning

phases of the building plan to direct the pertinent plan work. In

any case, it was perceived that improved computation strategies

couldn't satisfactorily catch the dynamicity and intricacy of the

climate. To handle this issue, researchers during the 1980s began

to take on factual techniques for anticipating building energy

utilization. From that point forward, critical headway has been

made in the field of building energy utilization forecasts. These

days, the three most well-known strategies for anticipating

energy utilization in structures incorporate designing

disentanglement, actual displaying, and ML- based techniques.

Safeguarding against the threats posed by malicious chatbots

requires a holistic approach spanning design, development, and

integration strategies. In the design phase, ethical AI principles

such as fairness, transparency, and accountability play a crucial

role in ensuring that chatbots do not exhibit harmful biases or

engage in deceptive interactions. Researchers emphasize the

importance of explainability, enabling users to understand how

chatbot decisions are made. Furthermore, adversarial robustness

is incorporated to prevent vulnerabilities that could be exploited

by bad actors.

During the development phase, security measures such as

adversarial training, continuous monitoring, and anomaly

detection mechanisms are implemented to identify and mitigate

potential threats in real time. AI developers utilize machine

learning techniques to detect unusual chatbot behaviors and

prevent them from generating toxic, misleading, or harmful

content. Additionally, robust authentication and encryption

protocols help safeguard user data, preventing unauthorized

access and misuse. The incorporation of reinforcement learning

with human feedback (RLHF) further refines chatbot behavior by

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

89

aligning responses with ethical guidelines and societal norms.

Integration strategies focus on deploying secure chatbot

frameworks with multi-layered security features, including

content moderation filters, regulatory compliance with data

protection laws (e.g., GDPR, CCPA), and real-time reporting

mechanisms for users to flag inappropriate responses.

Moreover, privacy-preserving techniques such as federated

learning and homomorphic encryption help enhance security

while ensuring data confidentiality. Blockchain technology is

also being explored for secure chatbot interactions, providing

immutable logs that prevent tampering and ensure

transparency. By adopting these comprehensive strategies,

developers can mitigate the risks associated with malicious

chatbots, ensuring that AI-powered conversational agents

remain ethical, secure, and beneficial across various domains,

including customer service, healthcare, finance, and social

media platforms.

III. PROPOSED WORK

The Project "Safeguarding Against Evil Chatbots: Design,

Development, And Integration Strategies for Chatbot Security

In Phishing Attacks" addresses the increasing risks posed by

chatbots exploited for phishing attacks. Traditional methods

like blacklists and heuristic analysis have proven insufficient

in combating sophisticated phishing tactics. This research

aims to develop a self-defensive chatbot that leverages

machine learning algorithms, including Support Vector

Machines (SVM), Random Forest, and Decision Tree, to

detect and neutralize phishing attempts by analyzing URLs

within user interactions. By integrating these algorithms into a

dummy banking application, the chatbot will use natural

language processing (NLP) to handle queries, safeguard

sensitive information, and protect users from malicious links.

The system is trained on the PHISH TANK URL dataset to

accurately distinguish between genuine and phishing URLs,

ensuring enhanced security and real-time threat detection.

Figure 1: Block Diagram

Step 1: Existing (Decision Tree)

The Decision Tree model, a popular classification algorithm,

is utilized in the project to detect phishing URLs. It works by creating

a tree-like structure where each node represents a decision based on a

feature, and each branch represents the outcome of that decision. In

the context of phishing detection, the Decision Tree examines features

extracted from URLs to classify them as either phishing or legitimate.

Although effective, Decision Trees can be prone to overfitting

and may

not generalize well to unseen data, especially with complex or

noisy datasets.

Step 2: Proposed (Random Forest)

The Random Forest model is proposed as an enhancement over

the Decision Tree for detecting phishing URLs. This ensemble

learning method combines multiple Decision Trees to improve

classification accuracy and robustness. Each tree in the Random

Forest is trained on a random subset of the data and features, and

their predictions are aggregated to make the final decision. This

approach mitigates the overfitting problem inherent in individual

Decision Trees and enhances the model’s ability to generalize

across diverse and complex datasets, making it more effective for

real-time phishing detection.

Step 3: Prediction of Output from Test Data with Random

Forest

Using the Random Forest model trained on the PHISHTANK

URL dataset, the system predicts the legitimacy of URLs in test

data. When a URL is input into the chatbot, it is transformed into

a feature vector and analyzed by the trained Random Forest

model. The model evaluates the URL based on its learned

decision rules and outputs whether it is a phishing link or not.

The Random Forest’s aggregated decision-making process

ensures accurate classification and effective detection of phishing

attempts, providing users with reliable protection against

malicious links.

3.1: Django with Machine Learning

Overview: Integrating machine learning with Django enables the

development of powerful web applications that leverage predictive

analytics and intelligent decision-making capabilities. Django, a high-

level Python web framework, provides a robust environment for building

and managing web applications, while machine learning models can

enhance these applications with advanced data processing and prediction

features. By combining Django’s ease of use with machine learning’s

predictive power, developers can create dynamic and responsive systems

that can analyze data, make predictions, and automate tasks based on

learned patterns. This integration typically involves training machine

learning models using libraries such as Scikit-Learn, TensorFlow, or

PyTorch, and deploying them within Django’s architecture to serve real-

time predictions through web interfaces.

1. Model Development: Develop and train machine learning models

using Python libraries. This involves data collection, preprocessing,

model selection, training, and evaluation. The trained model is then

serialized (saved) using tools like pickle or joblib for later use.

2. Django Integration:

To Create a Django Project: Set up a new Django project and

application. Configure the project settings and database connections.

Develop Views and URLs: Create Django views to handle requests,

process input data, and call the machine learning model for predictions.

Define URLs to route requests to the appropriate views.

Load the Model: In the Django views, load the serialized

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

90

machine learning model and use it to make predictions based on

user input.

Handle Data: Implement forms or API endpoints in Django to

capture user input, preprocess it as needed, and pass it to the

machine learning model.

Display Results: Render the prediction results on web pages or

provide them through APIs.

3. Deployment: Deploy the Django application with integrated

machine learning models to a production server. Ensure that the

server environment supports Python and the required machine

learning libraries.

Use Cases:

· Recommendation Systems: Provide personalized

recommendations based on user behaviour or preferences.

· Fraud Detection: Analyse transactions in real-time to detect

and prevent fraudulent activities.

· Chatbots: Enhance chatbot functionality with natural

language processing and predictive capabilities.

3.2. ML Model Building

Building a machine learning model involves a systematic process

that starts with clearly defining the problem and translating it into

a specific task, such as classification or regression. This is

followed by gathering relevant data from various sources while

ensuring privacy and ethical considerations. Data is then

preprocessed by cleaning, transforming, and splitting it into

training, validation, and test sets. Choosing the appropriate

algorithm and tools is crucial for model training, which involves

fitting the model to the data, tuning hyperparameters, and

validating performance. The model is then evaluated using

metrics and cross-validation, tested on unseen data, and deployed

into a production environment. Continuous monitoring,

documentation, and maintenance are essential to ensure ongoing

accuracy, with feedback used to iteratively improve the model

over time.

3.3 Existing Algorithm

Decision Tree: A Decision Tree is a fundamental machine

learning algorithm used for solving classification and regression

problems. It represents decisions and their potential consequences

through a tree-like structure. Each internal node in the tree

denotes a feature or attribute, each branch signifies a decision rule

or outcome, and each leaf node indicates a final class label or

continuous value. This graphical representation helps visualize

how decisions are made and how different attributes contribute to

the prediction.

How decision tree work

Decision Trees operate through a recursive process known as

recursive partitioning. The algorithm starts at the root node,

which contains the entire dataset. It selects a feature that best

separates the data according to a chosen criterion, such as

Information Gain (based on entropy) for classification or

Mean Squared Error (MSE) for regression. This feature is

used to split the data into subsets, creating branches for each

possible outcome. This process is repeated for each subset,

creating new nodes and branches until one of the stopping

conditions is met, such as a maximum depth or a minimum

number of samples in a node. The result is a tree where each

path from the root to a leaf represents a sequence of decisions that

lead to a final prediction. Decision Trees are easy to understand and

interpret, as they represent decisions in a straightforward,

hierarchical manner. In a project focused on detecting phishing

URLs, Decision Trees can be particularly useful due to their ability

to handle both numerical and categorical features effectively. They

can be trained to distinguish between legitimate and malicious URLs

based on various attributes like domain names, URL lengths, the

presence of special characters, and the structure of the URL. By

learning from historical data of phishing and non-phishing URLs,

the Decision Tree can identify patterns and rules that are indicative

of phishing attempts. This makes it possible to classify new URLs as

either benign or malicious in a straightforward and interpretable

manner. Additionally, Decision Trees provide a clear explanation of

the decision-making process, which is valuable for understanding

why a particular URL was classified in a certain way.

Disadvantages:

Despite their advantages, Decision Trees have notable limitations.

They are prone to overfitting, particularly when the tree becomes

very deep and complex. Overfitting occurs when the model learns

noise and specific details from the training data that do not

generalize well to new, unseen data. This results in a model that

performs well on training data but poorly on validation or test data.

Decision Trees can also be unstable; small changes in the training

data can lead to significant changes in the tree structure, affecting the

model's reliability. Furthermore, they can be biased towards features

with more levels, which may not always be relevant for the

classification task. Pruning techniques, which involve cutting back

the tree to remove nodes that provide little additional power, and

ensemble methods such as Random Forests, which combine multiple

Decision Trees, are often used to address these issues and improve

the model's performance and stability.

3.4 Proposed Algorithm

Random Forest

Random Forest is an ensemble learning method that combines

multiple Decision Trees to improve the performance and robustness

of predictions. It constructs a "forest" of Decision Trees by training

each tree on a random subset of the data and features, then

aggregates the predictions of all the trees to make a final decision.

This approach leverages the strengths of Decision Trees while

mitigating their weaknesses, resulting in a more accurate and

generalizable model. The Random Forest algorithm involves

creating a large number of Decision Trees during training and using

techniques like bagging (bootstrap aggregating) and feature

randomness to ensure diversity among the trees.

Architecture:

Random Forest operates through a two-step process: bagging and

feature randomness. During the training phase, it generates multiple

subsets of the original dataset by sampling with replacement

(bootstrapping). Each Decision Tree is trained on a different subset,

ensuring that each tree is exposed to different portions of the data.

Additionally, when splitting nodes, Random

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

91

Forest selects a random subset of features rather than considering

all features, which further promotes diversity among the trees.

Once trained, the Random Forest aggregates the predictions from

all individual trees, typically using majority voting for

classification or averaging for regression. This aggregation helps

to smooth out the predictions and reduce the risk of overfitting

that is common in single Decision Trees.

In the context of detecting phishing URLs, Random Forest can

provide significant advantages over individual Decision Trees. By

combining multiple Decision Trees, Random Forest improves the

model's ability to generalize to new, unseen data and reduces the

likelihood of overfitting. It can handle a large number of features

and interactions between them more effectively, which is crucial

for distinguishing between legitimate and malicious URLs based

on complex patterns. The ensemble nature of Random Forest

means that it can capture a broader range of decision rules and

relationships, leading to more accurate and reliable phishing

detection. Additionally, the feature importance scores provided by

Random Forest can help identify the most significant attributes

for classification, aiding in feature selection and model

interpretability.

Disadvantages:

· High Accuracy: Random Forest typically provides high

accuracy due to its ensemble approach. By aggregating the

predictions of multiple Decision Trees, it reduces the risk of

overfitting and variance, leading to more accurate predictions.

· Robustness: It is robust against overfitting, especially when

dealing with noisy data. The use of multiple trees helps smooth

out the influence of outliers and anomalies.

· Handles Large Datasets: Random Forest can handle large

datasets with a large number of features effectively. It can

manage high-dimensional data and capture complex interactions

between features.

· Feature Importance: It provides insights into the importance

of different features in the prediction process. This can be useful

for feature selection and understanding which attributes are most

influential.

· Versatility: Random Forest can be used for both classification

and regression tasks. Its flexibility makes it applicable to a wide

range of problems.

· Reduced Variance: By averaging the predictions of multiple

trees, Random Forest reduces the variance of the model, which

enhances its generalization to new data.

· No Need for Feature Scaling: Random Forest does not require

feature scaling or normalization, which simplifies the

preprocessing of data.

· Handles Missing Values: It can handle missing values in the

dataset, as it can use surrogate splits to handle missing values

during the decision-making process.

· Low Risk of Overfitting: Due to the random sampling of data

and features, Random Forest is less likely to overfit the training

data compared to a single Decision Tree.

· Parallel Processing: The training of multiple Decision Trees

can be done in parallel, which can speed up the process and make it

suitable for large-scale problems.

Comparison: Random Forest vs. Decision Tree

Random Forest is generally considered superior to individual

Decision Trees in many scenarios, including phishing detection. This

is due to its ability to reduce overfitting, improve accuracy, and

handle a large number of features and complex patterns more

effectively. While Decision Trees are simple and interpretable, they

can be prone to overfitting and instability. Random Forest addresses

these issues by averaging the predictions of multiple trees, which

enhances model robustness and generalization. Overall, Random

Forest's ensemble approach offers a more reliable and powerful

solution for detecting phishing attempts compared to single Decision

Trees.

IV. RESULTS & DISCUSSIONS

IMPLEMENTATION AND DESCRIPTION

4.1. Data Preparation

• Import Libraries: Start by importing necessary libraries

like pandas, NumPy, scikit-learn, and others for data

manipulation, model building, and evaluation.

• Load the Dataset: Load your dataset using pandas. The

data might need to be split into features (X) and the target

variable (y).

• Data Cleaning: Handle missing values, if any, by filling

them in or dropping rows/columns. Perform any necessary

transformations, such as encoding categorical variables.

• Feature Selection: Select the relevant features that will be

used for training the model. This can be done manually or

using automated techniques.

• Train-Test Split: Split the dataset into training and testing

sets. A common split is 80% for training and 20% for

testing.

4.2. Model Building

• Initialize the Random Forest Classifier: Create an

instance of the RandomForestClassifier from scikit-learn.

You can specify parameters like the number of trees

(n_estimators), depth of the trees (max_depth), and others.

• Train the Model: Fit the model to the training data. The

model will create multiple decision trees using random

subsets of the data and features.

• Feature Importance: After training, you can extract feature

importance scores to understand which features contribute

the most to the predictions.

4.3. Model Evaluation

• Predictions on Test Data: Use the trained Random Forest

model to make predictions on the test data.

• Performance Metrics: Evaluate the model using metrics

such as accuracy, precision, recall, F1 score, and confusion

matrix. These metrics help to understand how well the

model is performing.

• Cross-Validation: To ensure that the model generalizes

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

92

well, you can perform cross-validation, where the model

is trained and validated on different subsets of the data.

4.4. Tuning the Model

• Hyperparameter Tuning: Use techniques like Grid

Search or Random Search to find the best set of

hyperparameters for the model. This can involve

adjusting the number of trees, the depth of trees, and

other parameters.

• Re-training: Train the model again with the optimized

parameters to achieve better performance.

4.5. Prediction and Output

• Final Predictions: Use the trained model to make

predictions on new, unseen data.

• Output: The predictions can be outputted as probabilities

or classes, depending on the problem. You can save the

model for future use or integrate it into a larger

application.

4.6. Deployment (Optional)

• Model Serialization: Save the trained model using tools

like joblib or pickle for deployment in a production

environment.

• Integration: Integrate the model into a web application

or API for real-time predictions.

Description of Code:

• The code begins by importing necessary libraries like

pandas for data handling and RandomForestClassifier

from scikit-learn for building the model.

• The dataset is loaded, cleaned, and split into features and

target variables. Any necessary transformations or

encoding is done at this stage.

• The dataset is then split into training and testing sets to

ensure the model is evaluated on unseen data.

• A RandomForestClassifier is instantiated with specific

hyperparameters, and the model is trained on the training

data.

• After training, predictions are made on the test data, and

various performance metrics are calculated to assess the

model's accuracy and effectiveness.

• The model might be fine-tuned using hyperparameter

optimization techniques to improve performance,

followed by re-training with the best parameters.

• Finally, the model can be saved and integrated into an

application for real-time predictions or further analysis.

Results and Discussion

Fig 2: Home Page

The homepage of the application features a clean and user-

friendly design that welcomes visitors with a combination of

visual and textual elements. At the top of the page, a navigation bar

provides quick access to essential sections, including links to Home,

User Login, and Sign Up. This allows users to easily navigate the

site, whether they are returning users looking to log in or new

visitors wanting to create an account. Below the navigation bar, a

prominent image captures attention and sets the tone for the site's

theme. Accompanying the image is a content section that offers an

introductory overview, providing visitors with insights into the

website's purpose, features, or services. This layout ensures a

balanced presentation of information and aesthetics, making the

homepage both informative and visually appealing.

Fig 3: Signup page

The Signup Action function handles the user registration process in

the application. When a user submits the signup form, the function

receives the data via a POST request. It extracts the user's input,

including the username, password, contact information, email, and

address. The function first checks if the username already exists in

the database to prevent duplicate accounts. If the username is

available, the function inserts the new user's details into the register

table, completing the signup process. Upon successful registration, a

status message is generated to inform the user of the outcome. The

function then renders the Register.html template, passing the status

message to the context to provide feedback to the user. This process

ensures that each user is uniquely registered and receives

confirmation of their registration status.

Fig 4: Login page

The User Login Action function manages the user login process.

When a user submits their login credentials through a POST request,

the function retrieves the username and password from the form

data. It then connects to the database and fetches all records from the

register table. The function iterates over the records to check if the

provided username and password match any existing account. If a

match is found, the global variable uname is set to the username, and

the user is redirected to the UserScreen.html page with a

personalized welcome message. If the credentials are invalid, the

user is redirected back to the

UserLogin.html page with an error message indicating an invalid

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

93

login attempt. This function ensures that only authenticated users

can access the user screen, while unauthorized attempts are

handled appropriately.

Fig 5: Home Page After login

The homepage after login provides users with a personalized

experience, starting with a welcome message that greets them by

name, creating a friendly and engaging atmosphere. The page also

features a navigation bar that allows users to easily access various

functionalities of the application. The navigation options include

links to key features such as Random Forest, Decision Tree, and

SVM, which provide access to different machine learning models.

Additionally, there is a Chatbot feature that users can interact

with for assistance or further engagement. Finally, the Logout

option is available for users to securely exit their session when

they are done. This design ensures that users have quick and easy

access to important tools and features right from the homepage,

enhancing their overall experience.

Fig 6: Run Random Forest

This section of the view function is responsible for evaluating the

performance of the Random Forest classification model when a

GET request is made. The function calculates key metrics such as

accuracy, precision, recall, and F1-score using the test dataset.

These metrics are stored in lists and then dynamically displayed

in a table format on the ViewOutput.html template. Additionally,

a confusion matrix is generated and visualized using a heatmap,

providing insights into the model's classification performance.

The heatmap distinguishes between the true and predicted classes,

with labels such as 'Normal URL' and 'Phishing URL'. This

visualization is intended to help users understand the model's

effectiveness in distinguishing between different classes, aiding in

the analysis and interpretation of the results.

Fig 7: Predicted Value

The Predict Action function is used to classify a given URL as either

"Genuine URL" or "Contains PHISHING URL" using a pre-trained

Random Forest model. When invoked with a URL input, the

function first processes the URL by splitting it into components and

extracting relevant data using the get Data function. This data is then

transformed into a format suitable for the model using a TF-IDF

vectorizer. The transformed data is fed into the Random Forest

classifier (rf_cls) to make a prediction. Based on the classifier's

output, the function determines if the URL is genuine or potentially

a phishing attempt. The result is returned as a string indicating the

classification outcome.

Fig 8: Decision Tree

The RunDecisionTree function evaluates the performance of the

Decision Tree classification model when a GET request is made. It

calculates key metrics, including accuracy, precision, recall, and F1-

score, for the model using the test dataset. These metrics are appended to

global lists and displayed in an HTML table on the ViewOutput.html

template. The table includes performance metrics for both the Random

Forest and Decision Tree models for comparison. Additionally, the

function generates and displays a confusion matrix heatmap, which

visualizes the model's classification results with labels for 'Normal URL'

and 'Phishing URL'. This heatmap is plotted using Seaborn and

Matplotlib to provide a visual representation of the model's effectiveness

in distinguishing between different classes. The results are presented to

the user through the rendered template, offering insights into the

Decision Tree model's performance.

Fig 9: SVM graph

The RunSVM function is designed to assess the performance of an

SVM classifier by computing key metrics such as accuracy,

precision, recall, and F1-score using a test dataset. When the

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

94

function is triggered by a GET request, it runs predictions on the

test data (X_test) using the pre-trained SVM model (svm_cls).

The computed metrics are stored in global lists and displayed in

an HTML table within the ViewOutput.html template. This table

also includes comparison metrics for Random Forest and

Decision Tree models, allowing for easy performance evaluation

across different classifiers. Additionally, the function generates a

confusion matrix heatmap using Seaborn and Matplotlib,

visualizing the SVM model's ability to correctly classify 'Normal

URL' and 'Phishing URL' instances. The visual and tabular

outputs provide comprehensive insights into the SVM model's

effectiveness, which are then rendered for the user via the

template.

V. CONCLUS ION

In conclusion, the increasing sophistication of cyber threats,

particularly phishing attacks, necessitates the development of

more advanced and adaptive security mechanisms. Chatbots,

while revolutionizing customer service and user interaction, have

become potential vectors for these attacks, requiring robust

defenses to protect users from malicious activities. The research

presented in this study focuses on the design and development of

a self-defensive chatbot system, capable of detecting and

neutralizing phishing attempts in real-time.

By leveraging machine learning algorithms like Support

Vector Machines (SVM), Random Forest, and Decision Tree, the

system achieves a high level of accuracy in distinguishing

between legitimate and malicious URLs. The use of the

PHISH TANK URL dataset ensures that the model is trained on

a comprehensive set of real-world phishing threats,

enhancing its ability to adapt to new and evolving tactics

employed by attackers. The performance evaluation of the

model through metrics such as accuracy, precision, recall, F-

score, and confusion matrices underscores its effectiveness in

providing a secure environment for chatbot interactions. This is

particularly crucial in sensitive industries such as banking and

finance, where the potential consequences of a successful

phishing attack can be devastating, the integration of natural

language processing (NLP) techniques within the chatbot not only

improves the user experience but also enhances the system's

ability to identify and protect sensitive information. The

demonstration through a dummy banking application

highlights the practical applicability of the proposed system,

showcasing how it can be seamlessly integrated into existing

chatbot frameworks to provide an additional layer of security.

The research successfully addresses the challenges posed by

phishing attacks on chatbots, offering a comprehensive

solution that combines machine learning, NLP, and real-time

threat detection. The self-defensive chatbot system developed in

this study represents a significant advancement in chatbot

security, providing organizations with a powerful tool to

protect their users and maintain trust in digital interactions.

REFERENCES

[1] Yang J, Chen Y, Por L, Ku C. A systematic literature review of

information security in chatbots. Appl Sci. 2023 May

23;13(11):6355. doi: 10.3390/app13116355.

[2] 18. Introducing ChatGPT. OpenAI. [2023-03-23]

[3] Sriram A, Jun H, Satheesh S, Coates A. Cold fusion: Training

seq2seq models together with language models; 2017. arXiv preprint

arXiv:1708.06426.

[4] Liu P, Qiu X, Huang X, Recurrent neural network for

textclassification with multi-task learning; 2016. arXiv preprint

arXiv:1605.05101.

[5] Serban I, Sordoni A, Bengio Y, Courville A, Pineau J. Building

end-to-end dialogue systems using generative hierarchical neural

network models. Paper presented at: Proceedings of the AAAI

Conference on Artificial Intelligence, AAAI. Phoenix, Arizona;

2016.

[6] Nay C. Knowing what it knows: selected nuances of Watson’s

strategy. IBM Res News. 2011

[7] Howard M, Lipner S. The Security Development Lifecycle.

Redmond: Microsoft Press; 2006.

[8] 44. Wang D, Wang P. Two birds with one stone: two-factor

authentication with security beyond conventional bound. IEEE Trans

Depend Secure Comput.

[9] 2018;15(4):708-722

. https://doi.org/10:1109/TDSC.2016.2605087

[10] 45. Ometov A, Bezzateev S, Mäkitalo N, Andreev S,

Mikkonen T, Koucheryavy Y. Multi-factor authentication: a survey.

Cryptography. 2018;2(1):1.

[11] 46. Lemos R. Expect a new battle in cyber security: AI versus

AI; 2017.

[12] 47. Joo JW, Moon SY, Singh S, Park JH. S-Detector: an

enhanced security model for detecting Smishing attack for mobile

computing. Telecommun Syst.

[13] 2017;66(1):29-38.

[14] 48. Milanov E. The RSA algorithm. RSA laboratories; 2009:1-

11.

[15] 49. Endeley RE. End-to-end encryption in messaging services

and national security–case of WhatsApp messenger. JInfSecur.

2018;9(01):95

