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Abstract- The rapid adoption of chatbots by organizations to 

efficiently manage user queries has brought significant 

advancements, but it has also introduced new risks. 

Traditionally, before the integration of machine learning 

(ML) and artificial intelligence (AI), phishing prevention 

relied on manual techniques such as blacklists, rule-based 

filters, and heuristic analysis, which were often slow and 

insufficient against evolving threats. The primary issue was 

the manual nature of these systems, which struggled to keep 

up with the sophisticated tactics used by malicious entities, 

leading to the exploitation of chatbots for phishing attacks. 

This challenge highlighted the need for more intelligent and 

adaptive security measures. The objective of this research is 

to design, develop, and integrate a self-defensive chatbot 

capable of identifying and neutralizing phishing attempts by 

inspecting URLs embedded in user interactions. The 

motivation behind this study stems from the increasing 

incidents where chatbots are manipulated to deliver phishing 

links that, when clicked, install malicious software to steal 

sensitive data such as cookies and session passwords. This is 

particularly concerning for sectors like banking and finance, 

where compromised data can lead to significant user losses. 

The proposed system leverages machine learning algorithms, 

including Support Vector Machines (SVM), Random Forest, 

and Decision Tree, to create a robust model trained on the 

PHISHTANK URL dataset. This model can accurately 

distinguish between normal and malicious URLs in real- 

time, thereby enhancing the security of chatbot interactions. 

By evaluating each algorithm's performance through 

metrics such as accuracy, precision, recall, F-score, and 

confusion matrices, the system ensures optimal phishing 

detection capabilities. This integration is demonstrated 

through a dummy banking application where the chatbot 

processes user queries, employing natural language 

processing (NLP) techniques to extract and safeguard 

sensitive information. 

 

Keywords: Chatbots, Phishing Prevention, Machine 

Learning, Artificial Intelligence, SVM, Random Forest, 

Decision Tree, PHISHTANK URL dataset. 

I. INTRODUCTION 

 

Chatbots are increasingly being integrated into customer 

service platforms to handle user queries efficiently. These AI- 

powered systems are used across industries like banking, 

healthcare, and retail to provide immediate assistance. 

However, the widespread use of chatbots has also made them 

targets for phishing attacks, where malicious links are 

embedded in chatbot conversations to deceive users. The rise 

of digital communication platforms in India has brought about 

a significant increase in the deployment of chatbots across 

various sectors, especially in customer service, banking, and 

e-commerce. According to recent statistics, India is one of the 

fastest-growing markets for chatbot technology, with a 

projected annual growth rate of 24% in the AI-driven chatbot 

market between 2020 and 2025. This rapid adoption, while 

beneficial for automating routine tasks and improving 

customer engagement, has also opened the door to new cyber 

threats. Phishing attacks, where attackers trick users into 

revealing sensitive information by pretending to be 

trustworthy entities, have become increasingly sophisticated. 

In India, the number of phishing attacks rose by over 65% 

from 2021 to 2023, with many incidents involving the 

exploitation of chatbots. The traditional methods of phishing 

prevention, which relied heavily on blacklists and rule-based 

systems, have proven inadequate in the face of these evolving 

threats, underscoring the need for more advanced and adaptive 

security solutions. Before the advent of machine learning, 

phishing prevention relied on static methods such as 

blacklists, rule-based filtering, and heuristic analysis. These 
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manual systems were often slow to update and adapt, 

making them vulnerable to new and evolving phishing 

tactics. As a result, chatbots could be easily manipulated to 

distribute malicious links, posing significant risks to users, 

especially in sensitive sectors like banking and finance. 

This lack of real-time, adaptive security measures 

highlighted the limitations of traditional methods. The 

motivation for this research stems from the increasing 

number of incidents where chatbots have been exploited to 

deliver phishing links, leading to the theft of sensitive 

information such as cookies and session passwords. This is 

particularly alarming in industries where security is 

paramount, such as banking, where a single phishing attack 

can lead to massive financial losses for users. With the 

growing sophistication of phishing tactics, there is an 

urgent need to develop a robust security system that can 

protect chatbot interactions in real-time, ensuring that users 

are safeguarded against these evolving threats. The existing 

systems for phishing prevention are largely manual and 

include the use of blacklists, rule-based filters, and heuristic 

methods. While these approaches were effective in the past, 

they struggle to keep up with the speed and sophistication 

of modern phishing attacks. The primary drawback of these 

methods is their static nature, which leaves them unable to 

adapt quickly to new threats, resulting in increased 

vulnerability and higher success rates for attackers. The 

proposed system aims to address the limitations of 

traditional phishing prevention methods by leveraging 

machine learning algorithms to create an intelligent and 

adaptive security framework for chatbots. The system will 

utilize algorithms such as Support Vector Machines (SVM), 

Random Forest, and Decision Tree, which are trained on 

the PHISHTANK URL dataset to accurately identify and 

neutralize phishing attempts in real-time. Research papers 

such as "Phish Net: Predictive Blacklisting for Phishing 

Detection" and "Deep Learning-Based Phishing URL 

Detection" provide foundational insights into the 

application of these machine learning techniques for 

enhancing cybersecurity. By implementing these algorithms, the 

proposed system will continuously learn from new phishing 

attempts, improving its detection accuracy and adaptability over 

time. In today’s digital landscape, where chatbots are becoming 

integral to customer service and support, the need for robust 

security measures is more pressing than ever. Phishing attacks are 

growing in frequency and sophistication, posing a significant 

threat to both users and organizations. A real- time, adaptive 

system that can detect and neutralize phishing attempts in chatbot 

interactions is essential to protect sensitive user data and maintain 

trust in digital communication platforms. This project addresses 

this critical need by developing a security framework that can 

respond to the ever-evolving nature of cyber threats, ensuring the 

safety and security of chatbot users. This project has wide-ranging 

applications across various industries. In banking and finance, 

the system can be 

integrated into chatbots to secure customer interactions, 

preventing phishing attacks that could lead to financial loss. In 

e-commerce, the system can protect users from malicious 

links embedded in customer service chats, ensuring a safe 

shopping experience. In healthcare, the system can safeguard 

patient data by securing chatbot conversations used for 

appointment scheduling and consultations. Additionally, this 

system can be deployed in educational institutions to protect 

students from phishing attempts in online learning platforms, 

and in government services to secure interactions in citizen 

service chatbots. By integrating this security framework into 

various sectors, organizations can significantly reduce the risk 

of phishing attacks and enhance the overall security of their 

digital communication channels. 

 

II. RELATED WORK 

The research on the expectation of building energy utilization 

started during the 1970s when an energy emergency constrained 

nations to begin contemplating ways of cutting their energy 

utilization and fossil fuel by- products. The early-created 

models of building energy utilization forecast depended on the 

utilization of improved computation strategies that were 

observational models in light of broad designing works, 

permitting the evaluations to be performed at the beginning 

phases of the building plan to direct the pertinent plan work. In 

any case, it was perceived that improved computation strategies 

couldn't satisfactorily catch the dynamicity and intricacy of the 

climate. To handle this issue, researchers during the 1980s began 

to take on factual techniques for anticipating building energy 

utilization. From that point forward, critical headway has been 

made in the field of building energy utilization forecasts. These 

days, the three most well-known strategies for anticipating 

energy utilization in structures incorporate designing 

disentanglement, actual displaying, and ML- based techniques. 

Safeguarding against the threats posed by malicious chatbots 

requires a holistic approach spanning design, development, and 

integration strategies. In the design phase, ethical AI principles 

such as fairness, transparency, and accountability play a crucial 

role in ensuring that chatbots do not exhibit harmful biases or 

engage in deceptive interactions. Researchers emphasize the 

importance of explainability, enabling users to understand how 

chatbot decisions are made. Furthermore, adversarial robustness 

is incorporated to prevent vulnerabilities that could be exploited 

by bad actors. 

During the development phase, security measures such as 

adversarial training, continuous monitoring, and anomaly 

detection mechanisms are implemented to identify and mitigate 

potential threats in real time. AI developers utilize machine 

learning techniques to detect unusual chatbot behaviors and 

prevent them from generating toxic, misleading, or harmful 

content. Additionally, robust authentication and encryption 

protocols help safeguard user data, preventing unauthorized 

access and misuse. The incorporation of reinforcement learning 

with human feedback (RLHF) further refines chatbot behavior by 
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aligning responses with ethical guidelines and societal norms. 

Integration strategies focus on deploying secure chatbot 

frameworks with multi-layered security features, including 

content moderation filters, regulatory compliance with data 

protection laws (e.g., GDPR, CCPA), and real-time reporting 

mechanisms for users to flag inappropriate responses. 

Moreover, privacy-preserving techniques such as federated 

learning and homomorphic encryption help enhance security 

while ensuring data confidentiality. Blockchain technology is 

also being explored for secure chatbot interactions, providing 

immutable logs that prevent tampering and ensure 

transparency. By adopting these comprehensive strategies, 

developers can mitigate the risks associated with malicious 

chatbots, ensuring that AI-powered conversational agents 

remain ethical, secure, and beneficial across various domains, 

including customer service, healthcare, finance, and social 

media platforms. 

III. PROPOSED WORK 

 

The Project "Safeguarding Against Evil Chatbots: Design, 

Development, And Integration Strategies for Chatbot Security 

In Phishing Attacks" addresses the increasing risks posed by 

chatbots exploited for phishing attacks. Traditional methods 

like blacklists and heuristic analysis have proven insufficient 

in combating sophisticated phishing tactics. This research 

aims to develop a self-defensive chatbot that leverages 

machine learning algorithms, including Support Vector 

Machines (SVM), Random Forest, and Decision Tree, to 

detect and neutralize phishing attempts by analyzing URLs 

within user interactions. By integrating these algorithms into a 

dummy banking application, the chatbot will use natural 

language processing (NLP) to handle queries, safeguard 

sensitive information, and protect users from malicious links. 

The system is trained on the PHISH TANK URL dataset to 

accurately distinguish between genuine and phishing URLs, 

ensuring enhanced security and real-time threat detection. 

 

 

 

 

 

 

 

Figure 1: Block Diagram 

Step 1: Existing (Decision Tree) 

The Decision Tree model, a popular classification algorithm, 

is utilized in the project to detect phishing URLs. It works by creating 

a tree-like structure where each node represents a decision based on a 

feature, and each branch represents the outcome of that decision. In 

the context of phishing detection, the Decision Tree examines features 

extracted from URLs to classify them as either phishing or legitimate. 

Although effective, Decision Trees can be prone to overfitting 

and may 

not generalize well to unseen data, especially with complex or 

noisy datasets. 

Step 2: Proposed (Random Forest) 

The Random Forest model is proposed as an enhancement over 

the Decision Tree for detecting phishing URLs. This ensemble 

learning method combines multiple Decision Trees to improve 

classification accuracy and robustness. Each tree in the Random 

Forest is trained on a random subset of the data and features, and 

their predictions are aggregated to make the final decision. This 

approach mitigates the overfitting problem inherent in individual 

Decision Trees and enhances the model’s ability to generalize 

across diverse and complex datasets, making it more effective for 

real-time phishing detection. 

Step 3: Prediction of Output from Test Data with Random 

Forest 

Using the Random Forest model trained on the PHISHTANK 

URL dataset, the system predicts the legitimacy of URLs in test 

data. When a URL is input into the chatbot, it is transformed into 

a feature vector and analyzed by the trained Random Forest 

model. The model evaluates the URL based on its learned 

decision rules and outputs whether it is a phishing link or not. 

The Random Forest’s aggregated decision-making process 

ensures accurate classification and effective detection of phishing 

attempts, providing users with reliable protection against 

malicious links. 

3.1: Django with Machine Learning 

Overview: Integrating machine learning with Django enables the 

development of powerful web applications that leverage predictive 

analytics and intelligent decision-making capabilities. Django, a high-

level Python web framework, provides a robust environment for building 

and managing web applications, while machine learning models can 

enhance these applications with advanced data processing and prediction 

features. By combining Django’s ease of use with machine learning’s 

predictive power, developers can create dynamic and responsive systems 

that can analyze data, make predictions, and automate tasks based on 

learned patterns. This integration typically involves training machine 

learning models using libraries such as Scikit-Learn, TensorFlow, or 

PyTorch, and deploying them within Django’s architecture to serve real-

time predictions through web interfaces. 

 

1. Model Development: Develop and train machine learning models 

using Python libraries. This involves data collection, preprocessing, 

model selection, training, and evaluation. The trained model is then 

serialized (saved) using tools like pickle or joblib for later use. 

2. Django Integration: 

To Create a Django Project: Set up a new Django project and 

application. Configure the project settings and database connections. 

Develop Views and URLs: Create Django views to handle requests, 

process input data, and call the machine learning model for predictions. 

Define URLs to route requests to the appropriate views. 

Load the Model: In the Django views, load the serialized 
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machine learning model and use it to make predictions based on 

user input. 

Handle Data: Implement forms or API endpoints in Django to 

capture user input, preprocess it as needed, and pass it to the 

machine learning model. 

Display Results: Render the prediction results on web pages or 

provide them through APIs. 

3. Deployment: Deploy the Django application with integrated 

machine learning models to a production server. Ensure that the 

server environment supports Python and the required machine 

learning libraries. 

Use Cases: 

· Recommendation Systems: Provide personalized 

recommendations based on user behaviour or preferences. 

· Fraud Detection: Analyse transactions in real-time to detect 

and prevent fraudulent activities. 

· Chatbots: Enhance chatbot functionality with natural 

language processing and predictive capabilities. 

3.2. ML Model Building 

Building a machine learning model involves a systematic process 

that starts with clearly defining the problem and translating it into 

a specific task, such as classification or regression. This is 

followed by gathering relevant data from various sources while 

ensuring privacy and ethical considerations. Data is then 

preprocessed by cleaning, transforming, and splitting it into 

training, validation, and test sets. Choosing the appropriate 

algorithm and tools is crucial for model training, which involves 

fitting the model to the data, tuning hyperparameters, and 

validating performance. The model is then evaluated using 

metrics and cross-validation, tested on unseen data, and deployed 

into a production environment. Continuous monitoring, 

documentation, and maintenance are essential to ensure ongoing 

accuracy, with feedback used to iteratively improve the model 

over time. 

3.3 Existing Algorithm 

Decision Tree: A Decision Tree is a fundamental machine 

learning algorithm used for solving classification and regression 

problems. It represents decisions and their potential consequences 

through a tree-like structure. Each internal node in the tree 

denotes a feature or attribute, each branch signifies a decision rule 

or outcome, and each leaf node indicates a final class label or 

continuous value. This graphical representation helps visualize 

how decisions are made and how different attributes contribute to 

the prediction. 

How decision tree work 

Decision Trees operate through a recursive process known as 

recursive partitioning. The algorithm starts at the root node, 

which contains the entire dataset. It selects a feature that best 

separates the data according to a chosen criterion, such as 

Information Gain (based on entropy) for classification or 

Mean Squared Error (MSE) for regression. This feature is 

used to split the data into subsets, creating branches for each 

possible outcome. This process is repeated for each subset, 

creating new nodes and branches until one of the stopping 

conditions is met, such as a maximum depth or a minimum 

number of samples in a node. The result is a tree where each 

path from the root to a leaf represents a sequence of decisions that 

lead to a final prediction. Decision Trees are easy to understand and 

interpret, as they represent decisions in a straightforward, 

hierarchical manner. In a project focused on detecting phishing 

URLs, Decision Trees can be particularly useful due to their ability 

to handle both numerical and categorical features effectively. They 

can be trained to distinguish between legitimate and malicious URLs 

based on various attributes like domain names, URL lengths, the 

presence of special characters, and the structure of the URL. By 

learning from historical data of phishing and non-phishing URLs, 

the Decision Tree can identify patterns and rules that are indicative 

of phishing attempts. This makes it possible to classify new URLs as 

either benign or malicious in a straightforward and interpretable 

manner. Additionally, Decision Trees provide a clear explanation of 

the decision-making process, which is valuable for understanding 

why a particular URL was classified in a certain way. 

Disadvantages: 

Despite their advantages, Decision Trees have notable limitations. 

They are prone to overfitting, particularly when the tree becomes 

very deep and complex. Overfitting occurs when the model learns 

noise and specific details from the training data that do not 

generalize well to new, unseen data. This results in a model that 

performs well on training data but poorly on validation or test data. 

Decision Trees can also be unstable; small changes in the training 

data can lead to significant changes in the tree structure, affecting the 

model's reliability. Furthermore, they can be biased towards features 

with more levels, which may not always be relevant for the 

classification task. Pruning techniques, which involve cutting back 

the tree to remove nodes that provide little additional power, and 

ensemble methods such as Random Forests, which combine multiple 

Decision Trees, are often used to address these issues and improve 

the model's performance and stability. 

3.4 Proposed Algorithm 

Random Forest 

Random Forest is an ensemble learning method that combines 

multiple Decision Trees to improve the performance and robustness 

of predictions. It constructs a "forest" of Decision Trees by training 

each tree on a random subset of the data and features, then 

aggregates the predictions of all the trees to make a final decision. 

This approach leverages the strengths of Decision Trees while 

mitigating their weaknesses, resulting in a more accurate and 

generalizable model. The Random Forest algorithm involves 

creating a large number of Decision Trees during training and using 

techniques like bagging (bootstrap aggregating) and feature 

randomness to ensure diversity among the trees. 

Architecture: 

Random Forest operates through a two-step process: bagging and 

feature randomness. During the training phase, it generates multiple 

subsets of the original dataset by sampling with replacement 

(bootstrapping). Each Decision Tree is trained on a different subset, 

ensuring that each tree is exposed to different portions of the data. 

Additionally, when splitting nodes, Random 
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Forest selects a random subset of features rather than considering 

all features, which further promotes diversity among the trees. 

Once trained, the Random Forest aggregates the predictions from 

all individual trees, typically using majority voting for 

classification or averaging for regression. This aggregation helps 

to smooth out the predictions and reduce the risk of overfitting 

that is common in single Decision Trees. 

 

In the context of detecting phishing URLs, Random Forest can 

provide significant advantages over individual Decision Trees. By 

combining multiple Decision Trees, Random Forest improves the 

model's ability to generalize to new, unseen data and reduces the 

likelihood of overfitting. It can handle a large number of features 

and interactions between them more effectively, which is crucial 

for distinguishing between legitimate and malicious URLs based 

on complex patterns. The ensemble nature of Random Forest 

means that it can capture a broader range of decision rules and 

relationships, leading to more accurate and reliable phishing 

detection. Additionally, the feature importance scores provided by 

Random Forest can help identify the most significant attributes 

for classification, aiding in feature selection and model 

interpretability. 

Disadvantages: 

· High Accuracy: Random Forest typically provides high 

accuracy due to its ensemble approach. By aggregating the 

predictions of multiple Decision Trees, it reduces the risk of 

overfitting and variance, leading to more accurate predictions. 

· Robustness: It is robust against overfitting, especially when 

dealing with noisy data. The use of multiple trees helps smooth 

out the influence of outliers and anomalies. 

· Handles Large Datasets: Random Forest can handle large 

datasets with a large number of features effectively. It can 

manage high-dimensional data and capture complex interactions 

between features. 

· Feature Importance: It provides insights into the importance 

of different features in the prediction process. This can be useful 

for feature selection and understanding which attributes are most 

influential. 

· Versatility: Random Forest can be used for both classification 

and regression tasks. Its flexibility makes it applicable to a wide 

range of problems. 

· Reduced Variance: By averaging the predictions of multiple 

trees, Random Forest reduces the variance of the model, which 

enhances its generalization to new data. 

· No Need for Feature Scaling: Random Forest does not require 

feature scaling or normalization, which simplifies the 

preprocessing of data. 

· Handles Missing Values: It can handle missing values in the 

dataset, as it can use surrogate splits to handle missing values 

during the decision-making process. 

· Low Risk of Overfitting: Due to the random sampling of data 

and features, Random Forest is less likely to overfit the training 

data compared to a single Decision Tree. 

· Parallel Processing: The training of multiple Decision Trees 

can be done in parallel, which can speed up the process and make it 

suitable for large-scale problems. 

Comparison: Random Forest vs. Decision Tree 

Random Forest is generally considered superior to individual 

Decision Trees in many scenarios, including phishing detection. This 

is due to its ability to reduce overfitting, improve accuracy, and 

handle a large number of features and complex patterns more 

effectively. While Decision Trees are simple and interpretable, they 

can be prone to overfitting and instability. Random Forest addresses 

these issues by averaging the predictions of multiple trees, which 

enhances model robustness and generalization. Overall, Random 

Forest's ensemble approach offers a more reliable and powerful 

solution for detecting phishing attempts compared to single Decision 

Trees. 

 

IV. RESULTS & DISCUSSIONS 

IMPLEMENTATION AND DESCRIPTION 

4.1. Data Preparation 

• Import Libraries: Start by importing necessary libraries 

like pandas, NumPy, scikit-learn, and others for data 

manipulation, model building, and evaluation. 

• Load the Dataset: Load your dataset using pandas. The 

data might need to be split into features (X) and the target 

variable (y). 

• Data Cleaning: Handle missing values, if any, by filling 

them in or dropping rows/columns. Perform any necessary 

transformations, such as encoding categorical variables. 

• Feature Selection: Select the relevant features that will be 

used for training the model. This can be done manually or 

using automated techniques. 

• Train-Test Split: Split the dataset into training and testing 

sets. A common split is 80% for training and 20% for 

testing. 

4.2. Model Building 

• Initialize the Random Forest Classifier: Create an 

instance of the RandomForestClassifier from scikit-learn. 

You can specify parameters like the number of trees 

(n_estimators), depth of the trees (max_depth), and others. 

• Train the Model: Fit the model to the training data. The 

model will create multiple decision trees using random 

subsets of the data and features. 

• Feature Importance: After training, you can extract feature 

importance scores to understand which features contribute 

the most to the predictions. 

4.3. Model Evaluation 

• Predictions on Test Data: Use the trained Random Forest 

model to make predictions on the test data. 

• Performance Metrics: Evaluate the model using metrics 

such as accuracy, precision, recall, F1 score, and confusion 

matrix. These metrics help to understand how well the 

model is performing. 

• Cross-Validation: To ensure that the model generalizes 
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well, you can perform cross-validation, where the model 

is trained and validated on different subsets of the data. 

4.4. Tuning the Model 

• Hyperparameter Tuning: Use techniques like Grid 

Search or Random Search to find the best set of 

hyperparameters for the model. This can involve 

adjusting the number of trees, the depth of trees, and 

other parameters. 

• Re-training: Train the model again with the optimized 

parameters to achieve better performance. 

4.5. Prediction and Output 

• Final Predictions: Use the trained model to make 

predictions on new, unseen data. 

• Output: The predictions can be outputted as probabilities 

or classes, depending on the problem. You can save the 

model for future use or integrate it into a larger 

application. 

4.6. Deployment (Optional) 

• Model Serialization: Save the trained model using tools 

like joblib or pickle for deployment in a production 

environment. 

• Integration: Integrate the model into a web application 

or API for real-time predictions. 

Description of Code: 

• The code begins by importing necessary libraries like 

pandas for data handling and RandomForestClassifier 

from scikit-learn for building the model. 

• The dataset is loaded, cleaned, and split into features and 

target variables. Any necessary transformations or 

encoding is done at this stage. 

• The dataset is then split into training and testing sets to 

ensure the model is evaluated on unseen data. 

• A RandomForestClassifier is instantiated with specific 

hyperparameters, and the model is trained on the training 

data. 

• After training, predictions are made on the test data, and 

various performance metrics are calculated to assess the 

model's accuracy and effectiveness. 

• The model might be fine-tuned using hyperparameter 

optimization techniques to improve performance, 

followed by re-training with the best parameters. 

• Finally, the model can be saved and integrated into an 

application for real-time predictions or further analysis. 

Results and Discussion 

 

 

Fig 2: Home Page 

The homepage of the application features a clean and user- 

friendly design that welcomes visitors with a combination of 

visual and textual elements. At the top of the page, a navigation bar 

provides quick access to essential sections, including links to Home, 

User Login, and Sign Up. This allows users to easily navigate the 

site, whether they are returning users looking to log in or new 

visitors wanting to create an account. Below the navigation bar, a 

prominent image captures attention and sets the tone for the site's 

theme. Accompanying the image is a content section that offers an 

introductory overview, providing visitors with insights into the 

website's purpose, features, or services. This layout ensures a 

balanced presentation of information and aesthetics, making the 

homepage both informative and visually appealing. 

 
Fig 3: Signup page 

The Signup Action function handles the user registration process in 

the application. When a user submits the signup form, the function 

receives the data via a POST request. It extracts the user's input, 

including the username, password, contact information, email, and 

address. The function first checks if the username already exists in 

the database to prevent duplicate accounts. If the username is 

available, the function inserts the new user's details into the register 

table, completing the signup process. Upon successful registration, a 

status message is generated to inform the user of the outcome. The 

function then renders the Register.html template, passing the status 

message to the context to provide feedback to the user. This process 

ensures that each user is uniquely registered and receives 

confirmation of their registration status. 

 
Fig 4: Login page 

The User Login Action function manages the user login process. 

When a user submits their login credentials through a POST request, 

the function retrieves the username and password from the form 

data. It then connects to the database and fetches all records from the 

register table. The function iterates over the records to check if the 

provided username and password match any existing account. If a 

match is found, the global variable uname is set to the username, and 

the user is redirected to the UserScreen.html page with a 

personalized welcome message. If the credentials are invalid, the 

user is redirected back to the 

UserLogin.html page with an error message indicating an invalid 
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login attempt. This function ensures that only authenticated users 

can access the user screen, while unauthorized attempts are 

handled appropriately. 

 

Fig 5: Home Page After login 

The homepage after login provides users with a personalized 

experience, starting with a welcome message that greets them by 

name, creating a friendly and engaging atmosphere. The page also 

features a navigation bar that allows users to easily access various 

functionalities of the application. The navigation options include 

links to key features such as Random Forest, Decision Tree, and 

SVM, which provide access to different machine learning models. 

Additionally, there is a Chatbot feature that users can interact 

with for assistance or further engagement. Finally, the Logout 

option is available for users to securely exit their session when 

they are done. This design ensures that users have quick and easy 

access to important tools and features right from the homepage, 

enhancing their overall experience. 

 

Fig 6: Run Random Forest 

This section of the view function is responsible for evaluating the 

performance of the Random Forest classification model when a 

GET request is made. The function calculates key metrics such as 

accuracy, precision, recall, and F1-score using the test dataset. 

These metrics are stored in lists and then dynamically displayed 

in a table format on the ViewOutput.html template. Additionally, 

a confusion matrix is generated and visualized using a heatmap, 

providing insights into the model's classification performance. 

The heatmap distinguishes between the true and predicted classes, 

with labels such as 'Normal URL' and 'Phishing URL'. This 

visualization is intended to help users understand the model's 

effectiveness in distinguishing between different classes, aiding in 

the analysis and interpretation of the results. 

 

 

Fig 7: Predicted Value 

The Predict Action function is used to classify a given URL as either 

"Genuine URL" or "Contains PHISHING URL" using a pre-trained 

Random Forest model. When invoked with a URL input, the 

function first processes the URL by splitting it into components and 

extracting relevant data using the get Data function. This data is then 

transformed into a format suitable for the model using a TF-IDF 

vectorizer. The transformed data is fed into the Random Forest 

classifier (rf_cls) to make a prediction. Based on the classifier's 

output, the function determines if the URL is genuine or potentially 

a phishing attempt. The result is returned as a string indicating the 

classification outcome. 

 

Fig 8: Decision Tree 

The RunDecisionTree function evaluates the performance of the 

Decision Tree classification model when a GET request is made. It 

calculates key metrics, including accuracy, precision, recall, and F1-

score, for the model using the test dataset. These metrics are appended to 

global lists and displayed in an HTML table on the ViewOutput.html 

template. The table includes performance metrics for both the Random 

Forest and Decision Tree models for comparison. Additionally, the 

function generates and displays a confusion matrix heatmap, which 

visualizes the model's classification results with labels for 'Normal URL' 

and 'Phishing URL'. This heatmap is plotted using Seaborn and 

Matplotlib to provide a visual representation of the model's effectiveness 

in distinguishing between different classes. The results are presented to 

the user through the rendered template, offering insights into the 

Decision Tree model's performance. 

 

Fig 9: SVM graph 

The RunSVM function is designed to assess the performance of an 

SVM classifier by computing key metrics such as accuracy, 

precision, recall, and F1-score using a test dataset. When the 
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function is triggered by a GET request, it runs predictions on the 

test data (X_test) using the pre-trained SVM model (svm_cls). 

The computed metrics are stored in global lists and displayed in 

an HTML table within the ViewOutput.html template. This table 

also includes comparison metrics for Random Forest and 

Decision Tree models, allowing for easy performance evaluation 

across different classifiers. Additionally, the function generates a 

confusion matrix heatmap using Seaborn and Matplotlib, 

visualizing the SVM model's ability to correctly classify 'Normal 

URL' and 'Phishing URL' instances. The visual and tabular 

outputs provide comprehensive insights into the SVM model's 

effectiveness, which are then rendered for the user via the 

template. 

 

V. CONCLUS ION 

 

In conclusion, the increasing sophistication of cyber threats, 

particularly phishing attacks, necessitates the development of 

more advanced and adaptive security mechanisms. Chatbots, 

while revolutionizing customer service and user interaction, have 

become potential vectors for these attacks, requiring robust 

defenses to protect users from malicious activities. The research 

presented in this study focuses on the design and development of 

a self-defensive chatbot system, capable of detecting and 

neutralizing phishing attempts in real-time. 

By leveraging machine learning algorithms like Support 

Vector Machines (SVM), Random Forest, and Decision Tree, the 

system achieves a high level of accuracy in distinguishing 

between legitimate and malicious URLs. The use of the 

PHISH TANK URL dataset ensures that the model is trained on 

a comprehensive set of real-world phishing threats, 

enhancing its ability to adapt to new and evolving tactics 

employed by attackers. The performance evaluation of the 

model through metrics such as accuracy, precision, recall, F- 

score, and confusion matrices underscores its effectiveness in 

providing a secure environment for chatbot interactions. This is 

particularly crucial in sensitive industries such as banking and 

finance, where the potential consequences of a successful 

phishing attack can be devastating, the integration of natural 

language processing (NLP) techniques within the chatbot not only 

improves the user experience but also enhances the system's 

ability to identify and protect sensitive information. The 

demonstration through a dummy banking application 

highlights the practical applicability of the proposed system, 

showcasing how it can be seamlessly integrated into existing 

chatbot frameworks to provide an additional layer of security. 

The research successfully addresses the challenges posed by 

phishing attacks on chatbots, offering a comprehensive 

solution that combines machine learning, NLP, and real-time 

threat detection. The self-defensive chatbot system developed in 

this study represents a significant advancement in chatbot 

security, providing organizations with a powerful tool to 

protect their users and maintain trust in digital interactions. 
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